Generation, biological consequences and repair mechanisms of cytosine deamination in DNA.

نویسندگان

  • Shin-Ichiro Yonekura
  • Nobuya Nakamura
  • Shuji Yonei
  • Qiu-Mei Zhang-Akiyama
چکیده

Base moieties in DNA are spontaneously threatened by naturally occurring chemical reactions such as deamination, hydrolysis and oxidation. These DNA modifications have been considered to be major causes of cell death, mutations and cancer induction in organisms. Organisms have developed the DNA base excision repair pathway as a defense mechanism to protect them from these threats. DNA glycosylases, the key enzyme in the base excision repair pathway, are highly conserved in evolution. Uracil constantly occurs in DNA. Uracil in DNA arises by spontaneous deamination of cytosine to generate pro-mutagenic U:G mispairs. Uracil in DNA is also produced by the incorporation of dUMP during DNA replication. Uracil-DNA glycosylase (UNG) acts as a major repair enzyme that protects DNA from the deleterious consequences of uracil. The first UNG activity was discovered in E. coli in 1974. This was also the first discovery of base excision repair. The sequence encoded by the ung gene demonstrates that the E. coli UNG is highly conserved in viruses, bacteria, archaea, yeast, mice and humans. In this review, we will focus on central and recent findings on the generation, biological consequences and repair mechanisms of uracil in DNA and on the biological significance of uracil-DNA glycosylase.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nitric oxide-induced deamination of cytosine and guanine in deoxynucleosides and oligonucleotides.

The autoxidation of nitric oxide (NO.) forms the nitrosating agent N2O3, which can directly damage DNA by deamination of DNA bases following nitrosation of their primary amine functionalities. Within the G:C base pair, deamination results in the formation of xanthine and uracil, respectively. To determine the effect of DNA structure on the deamination of guanine and cytosine, the NO.-induced de...

متن کامل

Dehydration, deamination and enzymatic repair of cytosine glycols from oxidized poly(dG-dC) and poly(dI-dC)

Cytosine glycols (5,6-dihydroxy-5,6-dihydrocytosine) are initial products of cytosine oxidation. Because these products are not stable, virtually all biological studies have focused on the stable oxidation products of cytosine, including 5-hydroxycytosine, uracil glycols and 5-hydroxyuracil. Previously, we reported that the lifetime of cytosine glycols was greatly enhanced in double-stranded DN...

متن کامل

DNA mismatch repair and DNA methylation in adult brain neurons.

DNA repair is essential for maintaining the integrity of the nucleotide sequence of cellular DNA over time. Although much information has accumulated recently on the mechanisms of DNA repair in cultured cells, little is known about the DNA repair capabilities of cells in the adult brain. In the present study, we have investigated the capacity of nuclear extracts from adult rodent brain neurons ...

متن کامل

AID to overcome the limitations of genomic information by introducing somatic DNA alterations

The immune system has adopted somatic DNA alterations to overcome the limitations of the genomic information. Activation induced cytidine deaminase (AID) is an essential enzyme to regulate class switch recombination (CSR), somatic hypermutation (SHM) and gene conversion (GC) of the immunoglobulin gene. AID is known to be required for DNA cleavage of S regions in CSR and V regions in SHM. Howeve...

متن کامل

The roles of APE1, APE2, DNA polymerase beta and mismatch repair in creating S region DNA breaks during antibody class switch.

Immunoglobulin class switch recombination (CSR) occurs by an intrachromosomal deletion requiring generation of double-stranded DNA breaks (DSBs) in immunoglobulin switch region DNA. The initial steps of DSB formation have been elucidated: cytosine deamination by activation-induced cytidine deaminase (AID) and the generation of abasic sites by uracil-DNA glycosylase (UNG). We show that abasic si...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of radiation research

دوره 50 1  شماره 

صفحات  -

تاریخ انتشار 2009